<u>Cramic</u> LETTERS

Solvent-Dependent Divergent Functions of Sc(OTf)₃ in Stereoselective Epoxide-Opening Spiroketalizations

Indrajeet Sharma,[†] Jacqueline M. Wurst,[‡] and Derek S. Tan^{*,†,‡}

[†]Molecular Pharmacology & Chemistry Program, [‡]Tri-Institutional PhD Program in Chemical Biology, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 422, New York, New York 10065, United States

Supporting Information

ABSTRACT: A stereocontrolled synthesis of benzannulated spiroketals has been developed using solvent-dependent Sc- $(OTf)_3$ -mediated spirocyclizations of *exo*-glycal epoxides having alcohol side chains. In THF, the reaction proceeds via Lewis acid catalysis under kinetic control with inversion of configuration at the anomeric carbon. In contrast, in CH₂Cl₂, Brønsted acid catalysis under thermodynamic control leads to retention of configuration. The reactions accommodate a variety of aryl substituents and ring sizes and provide stereochemically diverse spiroketals.

B enzannulated spiroketal natural products exhibit a broad array of biological activities.¹ Examples include the matrix metalloproteinase inhibitor berkelic acid,² the fungal cell wall glucan synthase inhibitory papulacandins,³ and the antiinflammatory aquilarinoside A.⁴ Bisbenzannulated spiroketals include the rubromycin family of human telomerase and HIV reverse transcriptase inhibitors,⁵ the DNA helicase inhibitor heliquinomycin, and the antibiotic purpuromycin, which inhibits aminoacyl-tRNA synthesis by a novel mechanism involving direct binding to the tRNA substrate.⁶ Notably, the benzannulated spiroketal core is essential for telomerase inhibition in the rubromycin family.⁷ Numerous approaches to the synthesis of benzannulated spiroketals have been reported.^{8,9} Despite these notable advances, most strategies rely upon thermodynamically controlled reactions that often lead to stereoisomeric mixtures at the anomeric carbon.¹

We have previously developed stereocontrolled approaches to aliphatic spiroketals using stereocomplementary kinetic spirocyclization reactions of *endo*-glycal epoxides that proceed with either inversion or retention of configuration at the anomeric carbon, independent of thermodynamic preferences.¹⁰ We have also extended this approach to benzannulated spiroketals via incorporation of aromatic rings on the cyclizing side chain.¹¹ Unfortunately, this approach provides low diastereoselectivity in spirocyclization reactions with phenolic nucleophiles (45:55 to 58:42 dr).¹¹

To address this problem, we envisioned an alternative entry to phenolic spiroketals involving stereoselective spirocyclizations of benzannulated *exo*-glycal epoxides (dihydrobenzofuran spiroepoxides). Spirocyclizations of exocyclic enol ether epoxides have apparently not been explored previously, although classical acid-catalyzed spiroketalizations of the parent exocyclic enol ethers are well-known,¹² and the corresponding epoxides¹³ have been used in intermolecular alcohol additions.¹⁴

Thus, the requisite benzannulated *exo*-glycal epoxide substrates were synthesized from salicylaldehydes 1 via alkyne additions to form propargyl alcohols 2a-h (Figure 1).¹⁵ Au(I)-mediated cycloisomerization, previously restricted to aromatic alkynes,^{15,16} then afforded *exo*-glycals **5a**-h. Diastereoselective *anti*-epoxidation with dimethyldioxirane (DMDO)¹⁷ provided *exo*-glycal epoxides **6a**-h. Interestingly, these epoxides were

Figure 1. Synthesis of exo-glycal epoxide substrates 6a-h.

Received: March 21, 2014 Published: April 17, 2014 stable upon warming to rt, in stark contrast to the corresponding *endo*-glycal epoxides, which cyclize spontaneously at -35 °C.¹⁸

We next explored spirocyclization reactions of benzannulated *exo*-glycal epoxide **6a** (Table 1). Notably, **6a** proved unreactive

Table 1. Spirocyclization Reactions of *exo*-Glycal Epoxide $6a^a$

^{*a*}Product ratios determined by ¹H NMR analysis of crude reaction products. NR = no reaction; DTBMP = 2,6-di-*tert*-butyl-4-methylpyridine. See the Supporting Information for the complete table.

under our previously reported MeOH and $Ti(O-i-Pr)_4$ spirocyclization conditions, as well as upon heating to 120 °C in toluene (entries 1–3). After investigating a wide range of Lewis acids,¹⁶ we were encouraged to find that $Sc(OTf)_3$ favored the inversion product 7a (entry 4), which could be formed exclusively by changing the reaction solvent from CH_2Cl_2 to THF (entry 5). The diastereoselectivity decreased slightly with substoichiometric $Sc(OTf)_3$ (entries 6 and 7). Other Lewis acids gave lower or even reversed diastereoselectivity.¹⁶

In low-temperature ¹H NMR experiments, we found that the $Sc(OTf)_3$ -mediated spirocyclization begins to occur at -35 °C.¹⁶ Complete selectivity for spirocyclization with inversion of configuration was maintained when the reaction was run at -20 °C (entry 8), but selectivity decreased at higher temperatures (entry 9), suggesting that the reaction proceeds under kinetic control between -35 and -20 °C.

Strikingly, when the room-temperature reaction was carried out in CH_2Cl_2 instead of THF, thermodynamic equilibration of an initially formed diastereomeric mixture afforded the retention product **8a** with complete stereoselectivity (entries 10, 11).¹⁹ A structural rationale for the observed thermodynamic preference is nonobvious, due to the conformational flexibility of 5-membered rings,²⁰ and remains a subject for further investigation. However, on the basis of these results, it is apparent that $Sc(OTf)_3$ plays divergent roles in the spirocyclization reactions depending upon solvent selection (THF vs CH_2Cl_2 , entry 9 vs 10).

It is known that metal triflates can serve as a mild source of triflic acid.²¹ Thus, we carried out mechanistic studies to differentiate between the Lewis and Brønsted acid activities of $Sc(OTf)_3$. Inclusion of the noncoordinating Brønsted base, 2,6-di-*tert*-butyl-4-methylpyridine (DTBMP),^{21a} in the reaction in THF did not affect diastereoselectivity (entry 8 vs 12). Treatment with ScCl₃ at rt also led to complete stereoselectivity for the contrathermodynamic spiroketal **7a** (entry 13). In contrast, spirocyclization with TfOH afforded a diastereomeric mixture favoring the retention product **8a** (entry 14). Taken together, these results suggest that Sc(OTf)₃ acts as a Lewis acid in THF at reduced temperatures, catalyzing formation of the contrathermodynamic spiroketal **7a** under kinetic control.

We next carried out the analogous experiments in CH_2Cl_2 where, upon warming to rt, $Sc(OTf)_3$ favors the retention product **8a** (entry 11). In contrast, inclusion of DTBMP resulted in a diastereomeric mixture favoring the inversion product **7a** (entry 15). However, spirocyclization with TfOH provided the retention product **8a** exclusively (entry 16). Treatment with both TfOH and DTBMP afforded a diastereomeric mixture of spiroketals, similar to the result observed with $Sc(OTf)_3$ and DTBMP (entry 17 vs 15). Collectively, these results suggest that $Sc(OTf)_3$ acts as a mild source of Brønsted acid in CH_2Cl_2 at rt, catalyzing formation of the thermodynamically favored spiroketal **8a** under equilibrium control.

We then investigated the scope of these stereocomplementary $Sc(OTf)_3$ -catalyzed spirocyclization reactions. Substrates with longer side chains (**6b**, **6c**) and various aryl substituents (**6d-h**) were synthesized from the corresponding alkyne and salicylaldehyde precursors (Figure 1). The bromide intermediate **4h** was also used to introduce other substituents (aryl, alkyne, azide, aldehyde, ester, imide) in **4i**-**n** to examine the functional group tolerance of the spirocyclization reactions (Figure S2, Supporting Information).¹⁶ The *exo*-glycals **4i**-**n** were then converted to the corresponding epoxide substrates **6i**-**n** (Figure S2, Supporting Information).¹⁶

In the spirocyclization reactions, both diastereomers of the larger 6- and 7-membered ring spiroketals (7b,c and 8b,c) could be obtained with complete diastereoselectivity based on solvent selection (Figure 2). For 8b, equilibration with $Sc(OTf)_3$ in CH_2Cl_2 required elevated temperature (60 °C). The 7-membered ring spiroketal 7c was obtained in somewhat lower yield due to an unexpected anti-Markovnikov 6-exo epoxide opening side reaction leading to a benzofuran product.¹⁶

Next, we investigated the electronic effects of various aryl substituents. A wide range of electron-withdrawing and -donating groups were tolerated (7d-n, 8d-n), and high diastereoselectivities were maintained. Notably, the nitrosubstituted substrate **6d** was less reactive and required more forcing conditions (7**d**: rt; 8**d**: 6 h). Conversely, the methoxy-substituted substrate **6e** was highly reactive, providing slightly decreased diastereoselectivity in the THF reaction (7**e**: 93:7 dr) and rapid equilibration in the CH₂Cl₂ reaction (8**e**: 1 h). These results are consistent with the expected electronic influence of these *para* substituents upon the reactive anomeric spiroepoxide center.¹⁸

The reactions also tolerated other reactive functionalities including alkyne (7j, 8j), azide (7k, 8k), aldehyde (7l, 8l), ester (7m, 8m), and phthalimide (7n, 8n) groups. In the case of

Figure 2. Scope of $Sc(OTf)_3$ -mediated spirocyclization reactions. (a) THF: 1.0 equiv $Sc(OTf)_3$, THF, $-20 \degree C$, 2-3 h; CH_2Cl_2 : 0.5 equiv $Sc(OTf)_3$, CH_2Cl_2 , 0 °C to rt, 1-12 h; diastereomeric ratios determined by ¹H NMR analysis of crude reaction mixtures; stereochemistry assigned based on NOESY analysis except **8b**, which was determined by X-ray crystallography;¹⁶ isolated yields after column chromatography shown in parentheses. (b) 60 °C. (c) 30% anti-Markovnikov 6-*exo*-cyclization side product also recovered.¹⁶ (d) rt.

azide 8k, $Sc(OTf)_3$ equilibration in CH_2Cl_2 required elevated temperature (60 °C).

In conclusion, we have developed novel, solvent-dependent $Sc(OTf)_3$ -mediated spirocyclizations of *exo*-glycal epoxides for the stereocontrolled synthesis of benzannulated spiroketals. This *exo*-glycal-based approach overcomes a key limitation of our previous *endo*-glycal-based approach and tolerates a wide range of functionalities. Applications to the diversity-oriented synthesis of stereochemically diverse spiroketal libraries are ongoing and will be reported in due course.

ASSOCIATED CONTENT

S Supporting Information

Detailed experimental procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: tand@mskcc.org.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. George Sukenick, Rong Wang, Dr. Hui Liu, Hui Fang, and Dr. Sylvi Rusli (MSKCC) for expert NMR and mass spectral support, Emil Lobkovsky (Cornell University) for X-ray crystallographic analysis, and the NIH (P41 GM076267) and Lucille Castori Center for Microbes, Inflammation, and Cancer (postdoctoral fellowship to I.S.) for generous financial support.

REFERENCES

(1) Reviewed in: (a) Sperry, J.; Wilson, Z. E.; Rathwell, D. C. K.; Brimble, M. A. *Nat. Prod. Rep.* **2010**, *27*, 1117–1137. For general reviews on spiroketals, see: (b) Aho, J. E.; Pihko, P. M.; Rissa, T. K. *Chem. Rev.* **2005**, *105*, 4406–4440. (c) Perron, F.; Albizati, K. F. *Chem. Rev.* **1989**, *89*, 1617–1661.

(2) (a) Stierle, A. A.; Stierle, D. B.; Kelly, K. J. Org. Chem. 2006, 71, 5357–5360. (b) Buchgraber, P.; Snaddon, T. N.; Wirtz, C.; Mynott, R.; Goddard, R.; Fürstner, A. Angew. Chem., Int. Ed. 2008, 47, 8450–8454.

(3) (a) Traxler, P.; Fritz, H.; Fuhrer, H.; Richter, W. J. J. Antibiot. **1980**, 33, 967–978. (b) Barrett, A. G. M.; Peña, M.; Willardsen, J. A. J. Org. Chem. **1996**, 61, 1082–1100. (c) Varona, R.; Perez, P.; Duran, A. FEMS Microbiol. Lett. **1983**, 20, 243–247.

(4) Qi, J.; Lu, J.-J.; Liu, J.-H.; Yu, B.-Y. Chem. Pharm. Bull. 2009, 57, 134–137.

(5) Reviewed in: Brasholz, M.; Soergel, S.; Azap, C.; Reissig, H.-U. Eur. J. Org. Chem. 2007, 3801–3814.

(6) (a) Bardone, M. R.; Martinelli, E.; Zerilli, L. F.; Coronelli, C. *Tetrahedron* 1974, 30, 2747–2751. (b) Kirillov, S.; Vitali, L. A.; Goldstein, B. P.; Monti, F.; Semenkov, Y.; Makhno, V.; Ripa, S.; Pon, C. L.; Gualerzi, C. O. *RNA* 1997, 3, 905–913.

(7) Ueno, T.; Takahashi, H.; Oda, M.; Mizunuma, M.; Yokoyama, A.; Goto, Y.; Mizushina, Y.; Sakaguchi, K.; Hayashi, H. *Biochemistry* **2000**, *39*, 5995–6002.

(8) For examples from benzannulated spiroketal natural product total synthesis, see the following. Berkelic acid: (a) Wu, X.; Zhou, J.; Snider, B. B. Angew. Chem., Int. Ed. 2009, 48, 1283-1286. (b) Bender, C. F.; Yoshimoto, F. K.; Paradise, C. L.; De Brabander, J. K. J. Am. Chem. Soc. 2009, 131, 11350-11352. (c) Snaddon, T. N.; Buchgraber, P.; Schulthoff, S.; Wirtz, C.; Mynott, R.; Fürstner, A. Chem.-Eur. J. 2010, 16, 12133-12140. (d) McLeod, M. C.; Wilson, Z. E.; Brimble, M. A. Org. Lett. 2011, 13, 5382-5385. (e) Wenderski, T. A.; Marsini, M. A.; Pettus, T. R. R. Org. Lett. 2011, 13, 118-121. (f) Fañanás, F. J.; Mendoza, A.; Arto, T.; Temelli, B.; Rodriguez, F. Angew. Chem., Int. Ed. 2012, 51, 4930-4933. Papulacandins: (g) Barrett, A. G. M.; Peña, M.; Willardsen, J. A. J. Chem. Soc., Chem. Commun. 1995, 1147-1148. (h) Denmark, S. E.; Regens, C. S.; Kobayashi, T. J. Am. Chem. Soc. 2007, 129, 2774-2776. Heliquinomycinone: (i) Qin, D.; Ren, R. X.; Siu, T.; Zheng, C.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4709-4713. (j) Siu, T.; Qin, D.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2001, 40, 4713-4716. Rubromycins: (k) Reviewed in refs 1 and 5. (1) Akai, S.; Kakiguchi, K.; Nakamura, Y.; Kuriwaki, I.; Dohi, T.; Harada, S.; Kubo, O.; Morita, N.; Kita, Y. Angew. Chem., Int. Ed. 2007, 46. 7458-7461. (m) Rathwell, D. C. K.; Yang, S.-H.; Tsang, K. Y.; Brimble, M. A. Angew. Chem., Int. Ed. 2009, 48, 7996-8000. (n) Wu, K.-L.; Mercado, E. V.; Pettus, T. R. R. J. Am. Chem. Soc. 2011, 133, 6114-6117. (o) Wei, L.; Xue, J.; Liu, H.; Wang, W.; Li, Y. Org. Lett. 2012, 14, 5302-5305. (p) Wang, W.; Xue, J.; Tian, T.; Zhang, J.; Wei, L.; Shao, J.; Xie, Z.; Li, Y. Org. Lett. 2013, 15, 2402-2405.

(9) For other selected approaches to benzannulated spiroketals, see the following. (a) Acid-catalyzed endo-glycal spirocyclization: Knabe, J.; Schaller, K. Arch. Pharm. 1968, 301, 457-464. (b) Chromone intramolecular Michael addition and chromone epoxide spirocyclization: Cremins, P. J.; Wallace, T. W. J. Chem. Soc., Chem. Commun. 1986, 1602–1603. (c) Dihydroxy ketone bicyclization: Tanaka, T.; Miyaguchi, M.; Mochisuki, R. K.; Tanaka, S.; Okamoto, M.; Kitajima, Y.; Miyazaki, T. Heterocycles 1987, 25, 463-484. (d) endo-Glycal epoxide spirocyclization: Friesen, R. W.; Sturino, C. F. J. Org. Chem. 1990, 55, 5808-5810. (e) endo-Glycal intramolecular alkoxyselenation: Elsley, D. A.; MacLeod, D.; Miller, J. A.; Quayle, P.; Davies, G. M. Tetrahedron Lett. 1992, 33, 409-412. (f) Glycoside dehydrative spirocyclization: Barrett, A. G. M.; Peña, M.; Willardsen, J. A. J. Chem. Soc., Chem. Commun. 1995, 1147-1148. (g) Alkyne cyclotrimerization: McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117, 6605-6606. (h) C-Aryl glycoside ring rearrangement: Kumazawa, T.; Asahi; Matsuba, S.; Sato, S.; Furuhata, K.; Onodera, J.-I. Carbohydr. Res. 1998, 308, 213-216. (i) Arylfuran Achmatowicz reaction: Balachari, D.; O'Doherty, G. A. Org. Lett. 2000, 2, 4033-4036. (j) C-Vinyl O-arylglycoside Claisen rearrangement-spirocyclization: Van Hooft, P. A. V.; Van Swieten, P. F.; Van der Marel, G. A.; Van Boeckel, C. A. A.; Van Boom, J. H. Synlett 2001, 269-271. (k) o-Quinone methide-exo-glycal hetero-Diels-Alder: Zhou, G.; Zheng, D.; Da, S.; Xie, Z.; Li, Y. Tetrahedron Lett. 2006, 47, 3349-3352. (1) β-Diketone-exo-glycal 1,3-dipolar cycloaddition: Lindsey, C. C.; Wu, K. L.; Pettus, T. R. R. Org. Lett. 2006, 8, 2365-2367. (m) Alkyne diol hydroalkoxylation: Messerle, B. A.; Vuong, K. Q. Organometallics 2007, 26, 3031-3040. (n) Oxidative radical spirocyclization: Liu, Y.-C.; Sperry, J.; Rathwell, D. C. K.; Brimble, M. A. Synlett 2009, 793-797. (o) Intramolecular Ullmann ether coupling: Yoshioka, K.; Takaishi, I.; Shiozawa, K.; Fukushi, Y.; Tahara, S. Biosci., Biotechnol., Biochem. 2008, 72, 2632-2639. (p) Multicomponent cascade reaction: Barluenga, J.; Mendoza, A.; Rodriguez, F.; Fananas, F. J. Angew. Chem., Int. Ed. 2009, 48, 1644-1647. (q) Enantioselective

endo-glycal spirocyclization: Sun, Z.; Winschel, G. A.; Borovika, A.; Nagorny, P. J. Am. Chem. Soc. 2012, 134, 8074–8077.

(10) (a) Potuzak, J. S.; Moilanen, S. B.; Tan, D. S. J. Am. Chem. Soc. **2005**, 127, 13796–13797. (b) Moilanen, S. B.; Potuzak, J. S.; Tan, D. S. J. Am. Chem. Soc. **2006**, 128, 1792–1793.

(11) Liu, G.; Wurst, J. M.; Tan, D. S. Org. Lett. 2009, 11, 3670–3673.
(12) (a) Fittig, R.; Strom, K. T. Justus Liebigs Ann. Chem. 1892, 267, 191–203. (b) Dedek, V.; Trska, P. Collect. Czech. Chem. Commun. 1970, 35, 651–660. (c) Ley, S. V.; Lygo, B.; Organ, H. M.; Wonnacott, A. Tetrahedron 1985, 41, 3825–3836.

(13) (a) Ahmad, M. S.; Baddeley, G. J. Chem. Soc. 1961, 4303-4306.
(b) Ernest, I.; Fritz, H.; Rihs, G. Helv. Chim. Acta 1987, 70, 203-209.
(c) Adam, W.; Hadjiarapoglou, L.; Jaeger, V.; Seidel, B. Tetrahedron Lett. 1989, 30, 4223-4226. (d) Adam, W.; Hadjiarapoglou, L.; Wang, X. Tetrahedron Lett. 1989, 30, 6497-6500.

(14) (a) Brady, B. A.; Geoghegan, M.; O'Sullivan, W. I. J. Chem. Soc., Perkin Trans. 1 1989, 1557–1562. (b) Nicotra, F.; Panza, L.; Russo, G. Tetrahedron Lett. 1991, 32, 4035–4038.

(15) Harkat, H.; Blanc, A.; Weibel, J.-M.; Pale, P. J. Org. Chem. 2008, 73, 1620–1623.

(16) See the Supporting Information for full details.

(17) Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111, 6661–6666.

(18) Wurst, J. M.; Liu, G.; Tan, D. S. J. Am. Chem. Soc. 2011, 133, 7916–7925.

(19) A benzylidenedihydrofuranone, presumed to arise from opening of the benzannulated ring followed by elimination of the C2-OTIPS group, was also recovered as a minor byproduct (Figure S1, Supporting Information).¹⁶

(20) Tlais, S. F.; Dudley, G. B. Org. Lett. 2010, 12, 4698-4701.

(21) (a) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem.—Eur. J. 2004, 10, 484–493. (b) Rosenfeld, D. C.; Shekhar, S.; Takemiya, A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179–4182.
(c) Dang, T. T.; Boeck, F.; Hintermann, L. J. Org. Chem. 2011, 76, 9353–9361.